
Can Expanding DataSources in Pharma lead to Faster Drug Development?


James Streeter, Global VP Life Sciences Strategy, Oracle Health Sciences
It’s a logical conclusion that expanding data sources in clinical trials can lead to more therapies, but does this additional data speed up or slow down a clinical trial? In the past, clinical trials have used only structured, clinically-sourced data, which was relatively easy to organize and mine, but clinical trials today are more complex and utilize data from a plethora of sources such as mHealth devices for remote monitoring of trial patients, mobile health applications, biomarker data clinically-sourced data and more. If the end goal is getting more therapies to market, and currently only 20-30 percent of drugs make it to market, the question becomes, can expanding our data sources and improving the aggregation and management of both unstructured and structured data help improve the likelihood of regulatory approval and getting safe and effective drugs into the hands of patients? The answer is “yes” and we believe that the combination of advanced technology and the emerging role of the data scientist hold the key.
If we can get to a place where larger and more comprehensive datasets are made available to pharmaceutical companies and their clinical researchers, we can move beyond the questions of what data to collect and how to use it, to more meaningful questions such as, what new theory can I prove regarding the population of this trial, should my study continue based on new insights I’ve received, or what new patterns can I uncover to lead me to a new hypothesis. The answer to these questions lies in technology—technology with advanced metadata management capabilities that can offer the flexibility and scalability needed to handle all real-world data in the format, size, and frequency required as clinical trials evolve.
Today, data from various domains is exploding to give us a more comprehensive picture of clinical studies that can improve our decision making. There are tremendous challenges in aggregating, storing and preparing the data for high speed analysis because it is no longer just structured data. It is both structured and unstructured data coming from a growing number of systems, devices and publications such as EMRs, medical devices and documented research. This influx, while valuable, is making it difficult to capture and analyze at different intervals throughout a study.
Take for example a biopharmaceutical company focused on cancer drug development. To improve their study and time to market, study teams want the ability to quickly combine and analyze data collected through the clinical trial along with genomics data, to have insight into whether or not the patients admitted into the trial are the right people based on their genes and likelihood of responding to the treatment. Armed with this information early on in the process, study teams can determine if they are on the right track or if they need to course correct with more precise patients. This correlation between the study and genomics enables biopharmaceuticals to better identify the exact type of patient who has a better chance of responding positively to the drug. It is a big step toward precision medicine.
At first glance the notion of combining multiple data types for better outcomes may seem time consuming, daunting and not worth the additional effort as it could slow down the time to market, but in reality, the combining of these invaluable data types and making that information available throughout a study actually increases the probability of a drug making it to market faster. Today’s technological advances and the emerging role of the data scientist, are giving us new levels of analysis and the ability to predict outcomes in near real-time. Innovations such as machine learning and artificial intelligence are providing us with new algorithmic techniques that can assist in identifying patterns that support enhanced and automated decision making along the drug development path. For example, having historical data about a clinical trial’s ability to recruit suitable patients can predict the probability of future recruitment success. The combination of qualitative and descriptive data now enables researchers to identify similar groups of patients who are best suited for a new trial. By knowing exactly who you’re looking for, you not only shorten site selection and patient recruitment, you also increase the likelihood of positive results.
There are tremendous challenges in aggregating, storing and preparing the data for high speed analysis because it is no longer just structured data
Historically the gap between combining structured and unstructured data for clinical trial decision making has caused errors and delays in setting up and completing successful trials. However, with the new aggregation, storage and analysis solutions, combined with artificial intelligence and machine learning we can now detect trends and negative signals much earlier in clinical trials. Not only does this compress the critical path for drug development and improve safety, it increases our chances of creating a more robust pipeline of disease-treating therapies–all at a faster pace than ever before.
However, even with all of our technological advances, the human role is still critical. In fact, with the growing amount of data and data types, a fairly new role has emerged—the data scientist or data revolutionist. As clinical researchers continue to focus their daily efforts on creating successful trials, the role of the data scientist is focused on directing overall clinical data quality and management activities that will support the progression of the drug development pipeline. This emerging role has responsibility for connecting the various dots across the organization to ensure the right data makes it into the right hands at the right time. While the role is defined based on each biopharmaceutical company’s needs, ultimately the data scientist’s job is to be a leader in both science and complex data management, quality and visualization from source to submission. So even as we continue to see more innovation in automating decision making, growing datasets and the management of the technological advances will still require a human touch.
When we combine today’s technological innovations and the new data scientist role, and apply them to the clinical world, we see a huge opportunity for positive impact. Not only does the insight from more data from different sources enhance the questions we ask of our clinical trials and fill a much needed disease-fighting pipeline of new drugs, it also allows us to uncover hidden relationships that can precipitate new hypotheses and provoke new, potentially life-saving questions that we never thought to ask before. With the right technology and people, new sources of data promise to speed, not slow, clinical trials allowing biopharmaceuticals to bring more life-saving drugs to market faster.
CIOReview Client : Flagship
Check Out Review Of CIOReview : Crunchbase, Glassdoor
Check This Out : CIOReview Overview, Muckrack
Featured Vendors
Tenthpin: The Trusted Advisor for Data-Driven Patient- Centric Value Chain Management in Life Sciences
Process Stream: Into the Depths: How Process Stream Leverages Experience and Embedded Research to Transform Businesses from the Inside Out
Indegene: Leveraging Technology to Drive Growth and Productivity Investing In Innovation In Operations, Analytics and Clinical Technology
MMIS: Global Compliance Platform Streamlines Processes and Delivers Business Intelligence Enterprise-Wide
Acceliant: Leading with Innovation, Facilitating Collaboration, Standardization and Productivity in Clinical Trial Management
Saama Technologies: New Fluid Analytics Engine from Saama Cost-Effectively and Rapidly Resolves Complex Data Analytics Challenges for Life Sciences
Iris Interactive Corporation: Boosting Collaboration and Decision Making Processes to Bring Products
Techsol Corporation: Offering Domain Rich, Regulatory Compliant, Accelerated and Cloud Enabled Techn
Solea Software Solutions: Offering Business Intelligence, Analytics, and Portal Services for Flouris
Xybion Corporation: Providing Interconnected Technology Enabled Solutions for Life Sciences, and oth
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
Using Technology to Improve Remote Worker Safety
A Call for More Consistent and Better Customer Experiences
Empathy Matters More Than Your Technology Budget
Empowering the Retail Paradigm
The Evolution of the Matrix
How Blue Shield of California implements finance technology in...
